tolong di jawab buat PTS besok plissss
Penjelasan dengan langkah-langkah:
--
Persegi panjang :
Rumus : [tex] \bf {\tt \red {U_n = n(n+1)}}[/tex]
[tex] \\ \\ \\ \\ [/tex]
----------♡----------
Persegi Panjang
Un = n ( n + 1 )
U17 = 17 ( 17 + 1 )
U17 = 17 ( 18 )
U17 = 306
----------♡----------
DETAIL JAWABAN :
☑MAPEL : MATE-MATIKA
☑KELAS : VIII - 8
☑MATERI : POLA BILANGAN
☑BAB : 1
☑KATA KUNCI : POLA BILANGAN PERSEGI PANJANG
☑KODE : 8.1.3
[tex] \\ \\ \\ [/tex]
--
[tex]\large{ \colorbox{lavender}{ \purple{ \boxed{ \green{ \star{ \purple{ \rm{«Penyelesaian \: Soal»: \green{ \star}}}}}}}}}[/tex]
[tex] \: [/tex]
[tex]\huge{ \purple{ \mathfrak{♡Pembahasan♡ : }}}[/tex]
[tex] \: [/tex]
Rumus Pola Bilangan Persegi Panjang
[tex] \boxed{ \purple{ \sf{U_{n} =n \times (n + 1) }}}[/tex]
[tex] \: [/tex]
[tex] \: \: \: \: \: \: \: \colorbox{yellow}{ \sf{ Menentukan~Pola~Ke~17}}[/tex]
[tex]\sf{U_{n}}[/tex] = n × ( n + 1)
[tex]\sf{U_{17}}[/tex] = 17 × ( 17 + 1 )
[tex]\sf{U_{17}}[/tex] = 17 × 18
[tex]\sf{U_{17}}[/tex]
[tex]\sf{U_{17}}[/tex] = [tex]\underline{\boxed{\red{\bf{306}}}}[/tex]
[tex] \: [/tex]
[tex]_________________________________________________________________________________________________________________________[/tex]
[tex] \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ [/tex]
=====
[tex]\colorbox{ff0000}{} \colorbox{ff4000}{}\colorbox{ff8000}{}\colorbox{ffc000}{}\colorbox{ffff00}{}\colorbox{c0ff00}{}\colorbox{80ff00}{}\colorbox{40ff00}{}\colorbox{00ff00}{}\colorbox{00ff40}{}\colorbox{00ff80}{}\colorbox{00ffc0}{}\colorbox{00ffff}{}\colorbox{00c0ff}{}\colorbox{0080ff}{}\colorbox{0040ff}{}\colorbox{0000ff}{}\colorbox{4000ff}{}\colorbox{8000ff}{}\colorbox{c000ff}{}\colorbox{ff00ff}{}\colorbox{ff00c0}{}\colorbox{ff00a0}{}\colorbox{ff0080}{}\colorbox{ff0040}{}[/tex]
[tex] \: [/tex]
[tex]\colorbox{black} { \blue{ \boxed{ \boxed{\rm\color{FF6666}{༆@}\color{FFB266}{O}\color{B2FF66}{n}\color{66FF66}{l}\color{66FFFF}{y}\color{66B2FF}{Y}\color{6666FF}{o}\color{B266FF}{o}\color{FF66FF}{j}\color{FF66B2}{i}\color{FF9999}{n}\color{FFCC99}{࿐}}}}}[/tex]
[answer.2.content]